Wilshire Consulting

2008 Asset Allocation Return and Risk Assumptions

January 28, 2008

WILSHIRE
CONSULTING

Table of Contents

Introduction 1
Expected Future Returns 1
Historical Returns 3
Inflation 4
Equity 5
U.S. Stocks 5
Developed ex-U.S. Market Stocks 8
Emerging Market Stocks 9
Global ex-U.S. Market Stocks 10
Fixed Income 11
U.S. Bonds 11
Cash Equivalents 13
Non-U.S. Bonds 14
Treasury Bonds and Treasury Inflation Protected Securities (TIPS) 14
Long-Term Bond (Citigroup LPF) 15
High Yield Bonds 15
Private Market Investments 16
Buyouts. 17
Venture Capital 18
Non-U.S. Buyouts 18
Distressed Debt 19
Mezzanine Debt 19
Private Markets Portfolio 20
Real Assets 20
U.S. Real Estate Securities 21
Non-U.S. Real Estate Securities 21
Private Real Estate (Direct Property) 22
Timberland. 22
Commodities 23
Wilshire's Historical Forecasts 24
Risk and Correlation 24
Appendix A: Wilshire 2008 Correlation Matrix 26
Appendix B: Wilshire 2008 Private Markets Correlation Matrix 27
Appendix C: Wilshire 2008 Private Real Estate Correlation Matrix 28
Appendix D: Historical 1, 5 \& 10-Year Rolling Returns: 1926 to 2007 29
Appendix E: Histogram of 1,5 \& 10-Year S\&P 500 Index Returns 32

Introduction

This repo rt is W ilshire Consulting 's annua 1 s tudy on asset allocation for institutional portfolios. The return and risk assumptions contained within the report should be used for asset-liability and asset allocation studies conducted in 2008. Unless otherwise noted, all re turn a ssumptions repres ent median geometric returns based on a log-norm al distribution.

The asse t a llocation pr ocess is co mprised of four steps. The initial s tep req uires forecasting return, risk, and co rrelation for all asset classes. The seco nd step is client specific and involves a review of a fund's unique financial commitments. Next, using inputs from the first two steps, an effici ent frontier of diversified portfolios is constructed. The portfolios residing on this frontier are specific to each client's commitments, or spending objectives, and repr esent varying tradeoffs between expe cted risk and funding cost or expected risk and real return. The fi nal step is to select an asset mix from the ef ficient frontier that m atches the institution 's attitude to ward risk. The research presented here aids in com pleting the first step of the asse t allocation process. Wilshire Consulting works with funds individually to com plete the remaining steps and to select the optimal portfolio which best reflects the risk to lerance and environm ent for that institution.

Expected Future Returns

At the beginning of each year, Wilshire reviews its long-term return and risk assumptions for the major asset classes. We define 'long-term' as forecasts that span at least the next ten years. This extended time horizon is consistent with the benefit/spending obligations of institutio nal inves tors, which genera lly av erage at le ast ten yea rs. W ilshire's forecasting methodology, which will be illustrated in exhibits throughout the paper, has a strong degree of accuracy over intervals of ten or more years and is superior to short-term estimates th at are no toriously error prone. As a result of this long -term forecasting horizon, W ilshire's assum ptions typically chan ge very little from year-to-year. O ne would only expect significant changes following a period of volatile directional swings in asset markets or valuations.

It is, however, routine practice for us to alter our return assumptions up or down to better fit changing market levels. This year is no exception and reflects the m arket impact from a turbulent 2007 environm ent th at experienced a return of volatility and a tightening credit market. Though our inflation and equity return forecasts have remained unchanged since last year, Wilshire's return assumptions for m ost fixed incom e classes have been reduced by at least 25 basis points. Hi gh yield bonds are the exception a mong fixed income asset classes, as wider cred it spreads have contributed to a quarter-point increase in our return forecast from 6.75% last year to 7.00% in this year's repo rt. This increase in high yield spreads is reflected in increased borrowing costs to fi nance private equity buyouts and have thus led us to reduce our priv ate markets return forecast. Further, as
will be discussed in the private markets section of this report, we have made some minor adjustments to the sub-asse t class weightings im plied in W ilshire's private market portfolio to bette r reflect typical ins titutional allocations. F inally, th is year's report is Wilshire's first to include asset class assumptions for timberland investments.

Long-term return forecasts play an important ro le in the institutional investm ent process. Actuarial in terest r ate a ssumptions, which are essentially p ortfolio return forecas ts, are intensively scrutinized because of their poten tial impact on plan contrib utions. Wilshire has been forecasting asset class returns us ing forward look ing assum ptions since 1981 with a strong record of success for ten-year pe riods. We believe the methods used in this report are both intuitive and robust.

Exhibit 1 presents W ilshire's 2008 return forecasts and contrasts them with our 2007 assumptions; while Exhibit 2 displays our 2008 projections in graphical form.

Exhibit 1

Wilshire's Expected Return and Risk Assumptions

	Total Return			Risk		
	2007	2008	Change	2007	2008	Change
Investment Categories:						
US Stocks	8.25 \%	8.25 \%	0.00 \%	16.00 \%	16.00 \%	0.00 \%
Dev ex-US Stocks	8.25	8.25	0.00	18.00	17.00	-1.00
Emerging Mkt Stocks	8.25	8.25	0.00	24.00	24.00	0.00
Cash Equivalents	3.00	3.00	0.00	1.00	1.00	0.00
U.S. Bonds	5.25	5.00	-0.25	5.00	5.00	0.00
High Yield Bonds	6.75	7.00	0.25	10.00	10.00	0.00
TIPS	5.00	4.00	-1.00	6.00	6.00	0.00
Non-U.S. Bonds	5.00	4.75	-0.25	10.00	10.00	0.00
US RE Securities	5.75	5.75	0.00	15.00	15.00	0.00
Private Real Estate	6.75	6.50	-0.25	12.50	12.25	-0.25
Non-US RE Securities	5.75	5.75	0.00	13.00	13.00	0.00
Private Markets *	11.50	11.25	-0.25	26.00	26.00	0.00
Commodities	4.25	4.25	0.00	13.00	13.00	0.00
Timberland	n.a.	7.25	n.a.	n.a.	15.00	n.a.
Inflation:	2.25	2.25	0.00	1.00	1.00	0.00
Total Returns minus Inflation:						
U.S. Stocks	6.00	6.00	0.00			
U.S. Bonds	3.00	2.75	-0.25			
Cash Equivalents	0.75	0.75	0.00			
Stocks minus Bonds:	3.00	3.25	0.25			
Bonds minus Cash:	2.25	2.00	-0.25			

* The 2007 return/risk uses 2007 forecasts with 2008 private market sub-asset class component weights

Exhibit 2

 2008 Return and Risk Assumptions

These return forecasts are more fully explaine d in subsequent sections dedicated to each asset class.

Historical Returns

A key check on the reasonablen ess of W ilshire's assum ptions is their rela tionship to historical re turns. Exh ibit 3 con trasts W ilshire's re turn a ssumptions with histo rical returns over various periods of time and market scenarios.

Exhibit 3

Historical Returns ${ }^{1}$ vs. Wilshire Forward-Looking Assumptions

Hers	Historical Returns				Wilshire Forecast
	1802-2007 *	1926-2007	High Inflation 1970-1979	Bull Market 1980-1999	
Total Returns:					
Stocks	8.2 \%	10.4 \%	5.9 \%	17.8 \%	8.3 \%
Bonds	4.9	5.7	7.2	10.0	5.0
T-bills	4.3	3.8	6.4	7.2	3.0
Inflation:	1.4	3.1	7.4	4.0	2.3
Total Returns minus Inflation:					
Stocks	6.8	7.3	-1.5	13.8	6.0
Bonds	3.5	2.6	-0.2	6.0	2.8
T-bills	2.8	0.8	-1.0	3.1	0.8
Stocks minus Bonds:	3.3	4.7	-1.3	7.8	3.3

* Jeremy Siegel return history from 1802-2001 ("Stocks for the Long Run" McGraw-Hill 2002) updated with the S\&P 500 Index and Lehman Aggregate Bond Index.

[^0]There are several notable relationships. Wilshire's stock and bond return forecasts, 8.3% and 5.0%, respectively, are close to the actua 1 returns achieved over the 206-year period ending 2007. The 3.3% relative return forecast for stocks versus bonds is identical to the 206-year history, while our relativ e return fo recast for stocks versu s inflation of 6.0% falls below the long run historical average of 6.8%.

The rem ainder of the report explains the methodologies behind W ilshire's return forecasts.

Inflation

Wilshire's long-term inflation forecast is 2.25%, which is unchanged from a year ago. To estimate lo ng-term inflation, W ilshire deri ves a m arket-based inflation forecast by subtracting the yield of a TIPS bond from the yield of a trad itional Treasury bond of the same maturity. For example, on December 31, 2007, the ten-year Treasury had a yield of 4.04% while the yield on the ten-year TIPS was 1.73%. The 2.31% difference in yields is the bond market's estimate for inflation over the next ten years, which is also referred to as the ten-year breakeven inflation rate. Wilshire's practice is to se lect a return forecast rounded to the nearest 0.25%. Consequent ly, we round the 2.31% breakeven inflation rate to arrive at our current inflation rate forecast of 2.25%.

Exhibit 4
Wilshire's Inflation Forecast and Historical CPI 1982-2007

Equity

U.S. Stocks

Wilshire's long-term expected return for U.S. stocks is 8.25%, unchanged from the past two years. The re latively low vo latility markets en joyed in recen t y ears cam e to an abrupt end in 2007 as the U.S. ho using r ecession and related subp rime credit woes contributed to investor uncerta inty. Exhibit 5 below docum ents the return of risk by charting the CBOE Volatility Index (VIX), incl uding a 100-day rolling trend line. F rom its recent lows under ten in Nove mber 2006, the VIX spiked to m ore than 30 in August and again in November 2007 as it found a new e levated trading range. Despite their wild ride, U.S. stocks posted deceptively stable mid-single-digit return s for 2007, with the Dow Jones W ilshire $5000{ }^{\text {SM }}$ Composite and S\&P 500 i ndexes returning 5.62% and 5.49%, respectively. Operating earnings for $\mathrm{S} \& \mathrm{P} 500$ companies were flat during the year, which when coupled with a modest 3.5% price increase pushed price-to-earnings (PE) ratios m arginally higher from 16.2 at the end of 2006 to 16.8 in Decem ber 2007, compared to a 19.4 average PE ratio during the past 25 years.

It is Wilshire's practice to employ a dividend-discount model ("DDM") to forecast lo ngterm U.S. stock returns.

Wilshire's current expected return for stocks incorporates the following assumptions:
$>$ A year-end 2007 S\&P 500 Index price of 1,468, up from 1,418 a year earlier;
$>$ A base earnings level of $\$ 87.5$ per share, down slightly from $\$ 87.7$ per share a year earlier;
$>$ Earnings-per-share growth of 8.5% during the next five years, dropping incrementally to 4.8% from years six through 15 ;
$>$ A 33% dividend payout ratio over the next five years, increasing increm entally from years six through 15 to 45% - its hist orical average over the past quartercentury;
$>$ Long-term earnings and dividend growth of 4.8% after 15 years, equal to a 2.25% inflation rate and a 2.50% real growth rate.

When estab lishing long -term retu rn proje ctions, it is helpf ul to iden tify the m odel's sensitivity to each of the assumptions that are used as inputs. This level of understanding is vital in f orecasting returns that can be used with greater c onfidence. Exhib it 6 demonstrates the m odel's sens itivity to cha nges in five-year earnings growth estim ates and dividend payout ratios.

Exhibit 6
DDM Forecast Sensitivity to Inputs

(\%)		Dividend Payout Ratio (Long Term)					
		25	30	35	40	45	50
	7.0	6.74	7.05	7.35	7.64	7.91	8.17
	7.5	6.82	7.15	7.46	7.76	8.04	8.31
	8.0	6.91	7.25	7.57	7.88	8.17	8.44
	8.5	7.01	7.36	7.69	8.00	8.30	8.58
	9.0	7.10	7.46	7.81	8.13	8.43	8.73
	9.5	7.20	7.58	7.93	8.26	8.57	8.87
	10.0	7.30	7.69	8.05	8.39	8.72	9.03
	10.5	7.41	7.81	8.18	8.53	8.87	9.18
	11.0	7.52	7.93	8.31	8.68	9.02	9.34
	11.5	7.63	8.06	8.45	8.82	9.17	9.50
	12.0	7.75	8.18	8.59	8.97	9.33	9.67

Wilshire's assumption of 8.5% earnings growth over the next five years is based on the historical relationship between the I/B/E/S 'bo ttom-up' secu rity level median five-year long-term earnings growth rate and the actual five-year earnings growth rate following the forecast. The historical relationship between these two sugge st the 'bottom -up' estimate is consistently overly optimistic and prone to 'over shoot' error by an average of approximately 40%. Therefore, in light of a year-end bottom -up long-term growth rate estimate of 12%, we expect the earnings growth rate over the next five years to be 8.5%. We expect dividend payout ratios to move towards their historical average of 45% during the next 15 years.

Exhibit 7 d etails the h istory of W ilshire's s tock retu rn forecasts together with the dividend-discount model return forecasts, historical returns, and the rolling returns for the ten-year period following each estim ate. Beginning in the mid-1980s, Wilshire chose to base its s tock return forecast on its DDM wher eas previously our forecast blend ed the model return with historical stock returns. With the exception of periods beginning in the late 1980s and early 1990s, Wilshire's DDM forecast has been a very g ood predictor of the S\&P 500's return during the following ten-y ear period. Actual ten-year returns that began in those years include d the technology bubble of th e late 1990s, som ething we would not expect our methodology to predict. Equity returns have subsequently deflated and W ilshire's forecasts from 1992 thr ough 1996, which span both the inflating and
deflating of the bubble, are once again consis tent with actual S\&P 500 returns for the subsequent ten years. The ten-year return beginning in 1997 is the first to miss the early years of the bubble and reflects a disproportionate impact from the subsequent sell-off.

Exhibit 7
Wilshire Stock Return Forecast vs. DDM Return, Historical Return \& Actual 10-Year Return Following Forecast

Developed ex-U.S. Market Stocks

Wilshire uses the sam e 8.25% expected retu rn for non-U.S. stocks of developed m arkets as it does for U.S. stock s. While this view has gained wider acceptance in recen t years, some institutional investors and their $m \quad$ oney m anagers assum e that the non-U.S. developed stock m arket will generate som ewhat high er returns th an U.S. stocks. As demonstrated in Exhibit 8, the historical record does not support a non-U.S. return premium.

Exhibit 8
Historical Returns: 1970-2007

	U.S. Dollar		Local Currency	
	Return	Risk	Return	Risk
S\&P 500 Index	11.1%	15.1%	11.1%	15.1%
MSCI EAFE Index	10.9	16.3	8.9	14.1
Europe	11.4	16.4	10.4	15.0
Pacific	10.7	20.3	8.0	16.8

Reliable returns for non-U.S. stocks are av ailable beginning in 1970. Since that time U.S. stocks, as represented by the S\&P 500 I ndex, have returned 11.1% per year, versus 10.9% for developed market non-U .S. stocks as m easured by Morgan Stanley Capital International's ("MSCI") EAFE Index in U.S. dollars. Given this long-term performance record, similar risk levels, and common financ ial attitudes toward risk-taking, it would seem reasonable to forecast sim ilar long-term returns for the U.S. and non-U.S. developed stock markets. In fact, evidence might suggest slightly lower expected returns on international stocks due to higher cost s (tran saction costs, taxes and dividend withholding) of investing outside U.S. markets.

Exhibit 9 includes the period from mid-1985 through m ost of 1995 during which the MSCI EAFE Index outperform ed the S\&P 500 Index due to the then robust Japanese market. However, the subsequent 11-plus years of out-perform ance by U.S. stocks versus non-U.S. stocks supports our assumption that the economic theories of Purchasing Power Parity ("PPP") and Interest Rate Parity ("IRP") prevail over long time periods and justify the selection of a single return assumption for both asset classes.

Exhibit 9
Rolling 10-Year Return \& Risk Comparisons

With the deficiency of concrete evidence that supports a non-U.S. equity return premium, Wilshire forecasts an 8.25% return for non-U.S. stocks of developed nations, the same as for U.S. stocks.

Emerging Market Stocks

Money managers have long supported the vi ew that em erging markets should produce returns above the developed EA FE markets. Poor returns in the late 1990s com bined with em erging m arkets' high volatility hav e, however, cau sed som e managers to reevaluate their position. In fact, it is im portant to understand that the historical record on emerging market perform ance is short and s hows mixed results. This gives us little confidence in predicting a return premium to emerging markets above our return forecast for the developed stock m arkets. For exam ple, prior to 2004, the historical return of the MSCI Emerging Markets Index was 12.4%, alm ost directly in line with the 12.5% return on the S\&P 500 Index during the same period.

The last four years, however, have seen emerging markets outperform developed equity markets by a wide m argin. This has caused the relative returns for emerging markets to again be superior to those of the d eveloped markets, as m easured fro m the start of the MSCI Emerging Markets Index, in a sim ilar fashion to that seen in the early 1990's. As shown by the rolling 5 -year relative return line in Exhibit 10, this appears to be a cyclical phenomenon and as such is insufficient ju stification to support a long-term return premium. The rolling 10 -year re lative re turn line dem onstrates the questionability of anticipating a sustainable return premium for emerging stocks.

Exhibit 10

Emerging Market Returns: 1988-2007

Wilshire recommends an em erging m arket expected re turn equal to the return for developed markets, rather than assum ing a sm all return premium to em erging markets. Our research shows that efficient portfo lios include as mall allocation to em erging markets, consistent with a m arket-weighting, even with a level of return equal to that of the developed equity m arkets. For exam ple, an efficient frontier constructed from Wilshire's underlying assum ptions for U.S., non-U.S. developed m arket and em erging market stocks suggests an al location of approxim ately 13.5% to em erging markets at a 16% risk level, which is the expected risk level of global stocks. This allo cation is slightly above the emerging markets' 11.5% weight within the global opportunity set.

Global ex-U.S. Market Stocks

Despite creating separate forecasts for the developed and emerging markets as discussed above, W ilshire's asset a llocation work - unless othe rwise directed by client circumstances - will im plicitly assume a m arket weighted com bination of our non-U.S. developed and emerging market components in a single non-U.S. equity asset class. The emerging markets com ponent will be m arket-weighted, which, as of 2007 end of year market values, represents approximately 19% of total non-U.S. equity. This approach is consistent with W ilshire's treatment of the U.S. stock market where large stocks are not separated from small stocks and value stocks are not separated from growth stocks in the asset a llocation proc ess. W ilshire belie ves that em erging m arkets have become sufficiently integ rated into the f abric of institutional m oney m anagement that m arket capitalization weighting will give most investors a near optimal return/risk tradeoff.

In this framework, em erging stock markets become a risk management or diversification vehicle rather than an asset cl ass that is expected to genera te higher long-term returns. Some clients, including m ost non-U.S. f und s ponsors, m ay prefer to treat em erging
markets as a separate as set class. Such an approach is easily accomm odated and is well supported by our practice of deriving sepa rate assum ptions for the developed and emerging markets. A market-weighted b lend of our developed ex -U.S. and em erging market stock forecasts leads to a combined global ex-U.S. equity return of 8.5%, or a 25 basis-point prem ium to each of the underl ying com ponents, which is due to the complementary nature of combining diversifying sub-asset classes.

Fixed Income

U.S. Bonds

Bond market yields provide the m ost reliable forecast of long-term future bond returns. On December 31, 2007, the yield-to-maturity on the Lehman Aggregate Bond Index was $4.90 \%, 44$ basis points lower than its 5.34% yield-to-m aturity one year earlier. Wilshire's practice is to use the current yiel d-to-maturity as the predictor of future bond returns, as such we round the 4.90% yield-to-m aturity of the Lehman Aggregate to arrive at our core bond forecast of 5.00%.

The U.S. yield curve moved from an inverted term structure to a more "normal" upward sloping curve during 2007 where long-term rate s are higher than s hort-term rates. Exhibit 11 illustrates the yield curve shift and compares the current curve to the historical 10 and 20-year averages. Curre nt yields are lower than r ecent history although the term structure is similar. The current spread between the ten and two-year yield is 0.99 versus 0.90 for the ten-year average and 0.84 for 20 -ye ars. The spread between the 30 and tenyear yield is 0.41 versus 0.42 and 0.35 for the 10 and 20 -year averages, respectively. As will be explained in the discussion of Treasuries and TIPS, the Lehm an Treasury I ndex and 7-10 Year Treasury Index provide the supporting data for our return forecasts.

Source: Lehman Brothers, U.S. Department of Treasury

Exhibit 12 below compares W ilshire's past bond return assum ptions with historical returns, yields and the rolling returns for the ten year period following each forecast. The accuracy of Wilshire's forecast methodology of future long-term returns is confirm ed by the tight relationsh ip between the forecas t line and the rolling ten-year historical return line depicted below.

Exhibit 12

Wilshire Bond Return Forecast vs.
Current Yield, Historical Return, \& Actual 10-Year Return Following Forecast

| | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | |

Cash Equivalents

Wilshire blends two methodologies in forecasting returns for cash equivalents: the "Yield Curve Approach" and the "Inflation-plus Approach."

The yield curve approach st arts with the yield-to-m aturity on Treasury bonds and subtracts the average yield premium between short and long bond yields. As we alluded to previously in the U.S. Bonds se ction, this premium can change for even long tim e periods. A 20-year observation allows for ch anges in market conditions while avoiding undesirable swings in the assum ed premium. As of Dec ember 31, 2007, the 20-year yield curve prem ium averaged 1.31%. Subtr acting 1.31% from the yield-to-m aturity of 3.59% on the Lehm an Treasury Index gives a 2.28% cash return forecast. Alternatively, the inflation-plus approach adds a short-term real return component to our inflation rate forecast. Over the past half-century, real returns for Treasury bills have averaged 1.62% that, when added to our 2.25% inflation ra te assum ption, equals a 3.87% cash return forecast. An equal blen d of the two approaches, rounded to the nearest 0.25%, leads to a 3.00% cash return forecast.

Exhibit 13 com pares W ilshire's yield curv e approach, inflation -plus approach and a 50/50 blend of the two approaches with the Tr easury bill r eturn for the rolling ten y ear period following each estimate. Focusing on the red line depicting a $50 / 50$ blend of the two approaches and the black line depicting th e Treasury bill rolling ten-year return, it appears that the $50 / 50$ blend serves as a rela tively accurate predic tor of cash equivalents for the forward ten-year period.

Exhibit 13
Wilshire's Cash Equivalents Forecast vs. Actual 10-Year Return

Source: Wilshire Compass, U.S. Department of Treasury

Non-U.S. Bonds

Investment theory suggests that non-U.S. bond yields will be equiva lent to core U.S. bond yields when currency adjustm ents are taken into account. This would im ply using the same five percent core U.S. bond return forecast for non-U.S. bonds. Our experience, however, shows that custodial costs, taxes, tr ansaction fees and a higher credit quality versus the U.S. bond market, due to the larg e proportion of government debt in non-U.S. bond indexes, reduce the non-U.S bonds retu rn by 25 basis points. Thus, our methodology results in a 4.75% expect ed return for non-U.S. bonds. Exhibit 14 compares historical core U. S. bond return and risk values ${ }^{2}$ with hedged and unhedged values of the Citigroup Non-U.S. Government Bond Index.

Exhibit 14
U.S. vs. Non-U.S. Bond Returns (1985 through 2007)

	U.S. Dollar		Local Currency	
	Return	Risk	Return	Risk
Core U.S. Bonds	8.3%	4.8%	8.3%	4.8%
Citigroup Non-U.S. Govt.	10.0%	11.5%	7.5%	4.0%

Unhedged non-U.S. bonds offered better returns ove r the 23 -year period due to a net fall in the dollar for the entire tim e period. Hedged non-U.S. bond returns take out expected and unexpected currency movements and exhibit returns 80 basis points below core U.S. bonds at less risk. A long-term forecast for non-U.S. bonds should not include a currency return, positive or negative, and should re ly upon historical hedge d returns. Risk forecasts, however, should come from the experience of the unhedged indexes unless a hedged strategy is employed.

In summary, Wilshire is using a 4.75% expected return for unhedged non-U.S. bonds and a 4.65% expected return for hedged non-U.S. bo nds, with a ten basis point deduction in return due to expected additional hedging costs.

Treasury Bonds and Treasury Inflation Protected Securities (TIPS)

Wilshire's return a ssumption for Treasuries is derived from the yield-to-m aturity on the Lehman Treasury Index. Our return forecast for Treasuries is 3.50%, which is based on the index's December 31, 2007 yield-to-maturity of 3.59%. W ilshire recommends using an expected return for Treasury Inflation Protected Securities (TIPS) equal to the expected return for sim ilar maturity, nominal Treasury bonds. The average m aturity for the Lehman U.S. TIPS Index was 9 . 3 years on Decem ber 31, 2007. Th e index with the closest average m aturity is the U.S. Treasury 7-10 Year Index, at 8.5 years. Therefore, our return forecast for TIPS is 4.00% and is based on the 3.95% yield-to-maturity of the

[^1]Treasury 7-10 Year Index. The assumption is 50 basis points higher than our forecast for Treasuries and reflects a TIPS portfolio that mirrors the Lehman U.S. TIPS Index, which has a longer average maturity than the Lehman Treasury Index.

Long-Term Bond (Citigroup LPF)

Wilshire's return assumption for long-term bonds is derived from the yield-to-maturity of the Citigroup Large Pension Fund (LPF) Index. The LPF index consists of fixed income beyond just U.S. Treasury securitie s that have maturities greater than the core m arket as represented by the Lehman Aggregate Bond Index. The index includes Treasuries, assetbacked secu rities and credit secu rities with a mi nimum maturity of s even y ears. O ur return forecast for long-term bonds is 5.25% and is based on the yield-to-m aturity of 5.17% on the Citigroup LPF Index as of Dece mber 31, 2007. W hile the assum ption is greater than our long- term Treasury assum ption of 4.50%, the difference is due to the inclusion of spread products in the Citigroup LPF Index. The duratio n of the LPF index is actually lower than that of the L ehman Long-Term Treasury Ind ex, with the av erage maturity of the Citigroup LPF Index at 12.0 years and 17.8 year s for the long-term Treasury index.

High Yield Bonds

Wilshire's return forecast for high yield bonds is 7.00%. This return forecast is b ased upon our high yield bo nd model that accoun ts for the dy namic nature of credit yield spreads, defaults and recoveries.

Wilshire's 7.00% high yield expected return incorporates the following assumptions:
$>$ An initial yield spread of 6.04%, up from 2.91% one year prior;
$>$ An initial default rate of 1.20%, increasing increm entally over a ten-year explicit period to a historical 4.50% average;
$>$ A ten-year cumulative annual default rate of 34.50%;
$>$ A constant 40.00% recovery rate, equal to the historical average recovery rate;
$>$ A ten-year cum ulative annual loss rate - defaults minus recoveries - equal to 20.70% versus 22.10% last year;

Wilshire's high yield bond m odel incorporates the ability to input vari able default rates. In Exhibit 15 we graph W ilshire's expected future default rates against all his torical cumulative default rates from 1970 through 2006 . Each line represents the historical cumulative default rates for high yield bonds is sued in a single vintage year. The dark solid line is Wilshire's forward-looking default rate that is used in ou r expected re turn model for high yield bonds. W ilshire's de fault forecast line represents default expectations for a m arket portfolio holding bonds issued across various years. W hile it differs in nature from the vintage year de fault lines, which represen t cumulative default rates specific to each s ingle year of issue, the ch art is useful in comparing our projection to historical default rate paths.

Exhibit 15
Historical Cumulative Default Paths - 1970 to 2006

Source: Moody's Investor Service
Our previous research on high yield bonds ${ }^{3}$ explains the rationale behind Wilshire's longterm return forecasting methodology in greater detail.

Private Market Investments

Private equity firms began 2007 with a spate of public to private transactions executing a record number of mega-deals capturing roughly 39% of the U. S. deal value vs. 35% for 2006^{4}. Also generating a large percentage of de al flow were forei gn investors exploiting the declining value of the U.S. dollar, purchasing a record 46% of the $\$ 230.5$ billion of U.S. m ergers and acqu isitions anno unced in the fourth qu arter, the la rgest reco rded portion since 1998.

As the third quarter rolled over however, the sub-prime market began to send tremors through the rest of the capital markets, squeezing liquid ity from the new deal pipeline. Exhibit 16 charts North American LBO transac tions for the past ten y ears. Despite the slowdown in the third and fourth quarters, North American Buyouts experienced growth of 17.4% in 2007, while M\&A transactions grew 10.3%.

[^2]Exhibit 16
North American LBO Activity (in \$ billions)

Source: Dealogic, RREEF
Wilshire's assum ptions for individual priv ate m arket asset clas ses are contain ed in Appendix B together with risk and return co mparisons to some of the major public asset classes. Our private m arket return expecta tions are based upon draw ing parallels to the public markets where appropriate. Further de tail on Wilshire's methodology is available in part two of our th ree part series on priv ate equity investing. ${ }^{5}$ Return forecas ts are shown in the first row of Appendix B.

Wilshire's risk forecasts, which are expressed as standard d eviations of annual retu rns, are reported in row two of Appe ndix B. Risk estimates for the Private Market asset class pose a unique challen ge because infrequent private market inves tment valuations preclude the calculation of short-term periodic returns. As a resu lt, projections of risk based on accounting data consistently understate risk. Wilshire's approach has thus been to estimate risk by dra wing parallels to the public markets and adjusting for any added risk contributed by financial leverage, the absence of liquidity, or greater business risk.

The remaining rows in Appendix B contain co rrelation forecasts. Again, thes e estimates come from parallels to the public m arkets and are useful in assess ing the diversification benefits of private markets. In general, Wilshire views the use of private equity as a type of super-ch arged equity retu rn rather th an a diversification tool. The linkage between these markets is quite in tuitive, as private equity returns are subject to the receptiveness of the capital markets to generate their outsized returns.

Buyouts

Our expected return for U.S. buyouts is 10.00%. The assum ption is that buyouts will exhibit similar business risks as publicly traded companies but will have greater financial risk. Therefore, it is appropriate to model buyout returns using public market proxies for

[^3]equity returns and financing costs. All expected returns in Appendix B are intended to be net returns. For exam ple, the 10.00% expected return for buyouts s hould be viewed as net of all fees, including carried interest.

Wilshire's risk forecast for U.S. buyouts is 28.00%. This forecast is con siderably higher than the 16.00% risk level we assum e for publ ic stocks and is attributable to greater financial risk due to a m ore leveraged cap ital structure in buyout com panies. Our leverage assumption is based on a capital s tructure with 40% short-term debt, 20% high yield debt, and 40% equity for buyouts, which is consistent with historical measurements.

Venture Capital

Wilshire's return assumption for venture capital is 12.00%, unchanged from last year and consistent with our view on the public m arkets. The valuation of venture capital investments can vary by m anager. This m ix of current and stale valuations becom es an issue when aggregating venture perf ormance for use in asset alloca tion. Therefore the presence of stale valuations suggests that to the extent ve nture capital perform ance is related to public market performance it will have some sensitivity to both recent and past returns. By including lagged data from the public markets, a m ore correct beta can be derived versus one naively found with a regression on contemporaneous data.

Our analysis indicates that venture capital e xhibits a beta of 1.7 to the public m arket. Using the f amiliar CAPM f ormula $E(r)=\beta\left(R_{m}-R_{f}\right)+R_{f}$, we can derive an exp ected return for venture capital. This return estimate makes intuitive sense as investors should demand ar eturn premium for making venture investments consider ing the uncerta inty inherent in investing in new ventures.
$E(r)=1.7(8.25-3.00)+3.00=11.93 \%$, which we round to 12.00%.
The first three quarters of 2007 saw total equity investm ents in venture-backed companies of $\$ 21.8$ billion versus $\$ 20.1$ billion for the same time period in $2006 .{ }^{6}$

Non-U.S. Buyouts

Non-U.S. Buyouts volume expanded by 22.9% despite the contraction in U.S. private equity markets in the latter half of the year. Sovereign wealth funds played a major roll over the past year taking minority stake investments in a wide variety of companies. ${ }^{7}$.

[^4]

Source: Dealogic, RREEF
Return and risk forecasts for non-U.S. buyouts follow the sam e methodology used for U.S. buyouts with two changes: non-U.S. devel oped market equity is used as a public market proxy instead of U.S. equity and W ilshire's non-U.S. bond assumption is used as the corporate debt proxy. The result is a 10.00% expected return and 30.00% risk.

Distressed Debt

The Citigroup Global Markets Ba nkrupt/Defaulted Debt Index was selected as a public market proxy for distressed debt investm ents. The index contains vi rtually all issues in default. The 19.00% risk forecast and correlations reported in Appendix B for distres sed debt are based upon historical m easurements for the Citigroup Index. The 8.75\% expected return for dis tressed debt com es from our view that successful distressed investors ta ke equity -like contro 1 position s in distr essed com panies with sign ificant upside potential but less risk than other buyouts becau se com panies have alread y encountered financial distress.

Our analysis suggests that one of the benefits of including distresse debt in a private markets portfolio is its low correlation with public asset classes, particularly stocks, when compared with other private market asset classes.

Mezzanine Debt

Wilshire views mezzanine debt like a convertible bond. However, unlike publicly traded convertibles with characteristics co mbining stocks and bon ds, mezzanine debt possesses characteristics combining buyouts and high yiel d bonds. Consequently, we expect their return and risk m easures to lie som ewhere between buyouts and high yield bonds. Therefore, the 8.75% return and 19.00% risk forecast for mezzanine debt in Append ix B is based upon a blend of our buyout and high yield assumptions.

Private Markets Portfolio

The return and risk forecast for a divers ified private m arkets portfolio is provided in Appendix B. The makeup of the private markets portfolio is:
U.S.
Venture
Non-U.S.
Mezzan

$$
\begin{array}{cr}
\text { Buyouts } & 50 \% \\
\text { Capital } & 20 \% \\
\text { Buyouts } & 20 \% \\
\text { ine Debt } & 5 \% \\
\text { Distressed Debt } & \underline{5 \%} \\
& 100 \%
\end{array}
$$

The weightings were ch osen because they ar e represen tative of typical private m arket allocations of large ins titutional in vestors. Dif ferent from last ye ar, the alloc ation to Venture Capital decreased from 30% to 20% representing a di minished ro le in representative private m arket portfolios. Addition ally, U. S. Buyouts decreased by ten percent where Non-U.S. Buyouts becam e more accessible and increased by ten percent. Mezzanine Debt and Distres sed Debt have not changed in weighting but are now explicitly broken out to give a more detailed view of the basket given recent ch anges in component weights.

When the com ponents are geom etrically calc ulated with a lognorm al assum ption, the forecast return for a d iversified private markets portfolio is 11.36%, which we roun d to 11.25% given our convention to round to the nearest quarter percent. This level of return is three percent above the 8.25% expected return for U.S. stocks. Th is year's forecasted return spread is down from 3.50% in last year's forecast as a result of the decrease in U.S. and Non-U.S. Buyout returns. The expected risk for the diversified private m arkets portfolio is 26%, down f rom 29% in last y ear's f orecast, ref lecting the decre ase in venture capital exposure and the general re-w eighting of the private m arkets' basket components. The 26% risk leve 1 is slightly m ore than $1.5 x$ the forecasted risk of U.S. stocks.

Real Assets

Asset cor relation, or the degree to which asse t prices move in tandem, results f rom a common sensitiv ity to underly ing economic forces (i.e. growth, em ployment inflation). Real assets, in particular, share a po sitive correlation to inf lation and co nsequently, can partially hedge real as set investment values against in flationary environm ents. This connection with inflation gene rates a relativ ely low co rrelation with other tr aditional assets; therefore W ilshire groups the disc ussion of Real Estate, Timberland, and Commodities into a Real Assets ${ }^{8}$ section. While we consider TIPS a m ember of the real asset class, they are absent from this sec tion as a discussion of our TI PS methodology was included in the Fixed Income section above.

[^5]
U.S. Real Estate Securities

Wilshire is forecasting an expected retu rn of 5.75% for U.S. real estate securities, unchanged from last year's forecast. This assumption is derived from combining the oneyear average Equity REIT dividend yield fo r 2007 of 4.09% with an expected dividend growth rate of 1.7%. Exam ining REIT dividend growth over the past 33 years, W ilshire found that REITS were able to pass through a bout three-quarters of inflation through rent and dividend increases. The 1.7% expected dividend growth equa is three-quarters of Wilshire's 2.25% inflation forecast. The REIT sector follo wed up the 36.0% gain in 2006 with a sharp -17.6% loss in 2007. Exhi bit 18 shows that whil e the REIT dividend yield increased steadily throughout the year, this increa se is the direct result of falling index values and is a key reas on for our stable expected retu rn fore cast for U.S. Real Estate Securities.

Exhibit 18 REIT Dividend Yield

Source: FTSE Group and the National Association of Real Estate Investments Trust

Non-U.S. Real Estate Securities

Wilshire's usual practice is to assum e com parable non-U.S . and U.S. returns within a global asset class containing re gional components. Within this context we often employ a market or model based approach to for ecasting the U.S. com ponent return, which we then build into a non-U.S. component assumption. Similar to our equity assumptions, we forecast a lo ng-term return for U.S. real es tate securities and then expand that resu lt to serve as our non-U.S. real estate securities return forecast. While the historical record for global real estate securities is short, it does not support a non-U.S. return prem ium and until strong evidence su pports otherwise, we are comfortable assum ing a si milar return globally. This approach leads to our 5.75% long-term return forecast for global real estate securities.

Private Real Estate (Direct Property)

Private real estate i nvestments with the ex ception of infrastructure ${ }^{9}$ can be divided into three prim ary subsets: core, value-added, and opportunistic. W ilshire's return assumption for private real estate is 6.50% a nd is based on a private real estate portfolio consisting of 70% core, 15% value-added, and 15% opportunistic. The 25 basis point decrease in our private real estate return mainly reflects a decrease in the pro spects of individual components in our priv ate real estate portfolio. These private real estate asset weightings are flexible and de pendent on a client 's investm ent object ives. W ilshire's assumptions for indiv idual private real esta te asset classes are contained in Appendix C together with comparisons to some of the major public asset classes.

As m entioned above, the private real esta te portfolio can be broken up into three categories: core, value-added, and opportunis tic. Core real estate investm ents are characterized by larger properties with more stable cash flows, less utilization of financial leverage and a lower level of risk than the other real estate investment strategies. Valueadded investm ents in the real estate m arket are ch aracterized by im provements in a number of attributes. Value- added real es tate investors are able to create wealth by developing new properties as well as redeveloping underp erforming properties through physical, financial and operational upgrades. Investing in opportunistic real estate occurs after the cy clical natu re of assets in di fferent geographies and property types cause market values to fall. Th e opportunistic investor attemp ts to successfully exploit inefficient market pricing through property selection and market-timing while at the same time managing risk appropriately. F or a more detailed discussion on Private Real Estate Investing, please refer to Wilshire's 2006 research paper "Private Real Estate Investing."

Timberland

Timberland Investm ent returns are driven by four prim ary co mponents: biological growth, the m arket price for tim ber, the m arket price for land, a nd the skill of active management. W ilshire's return assum ption for the tim ber asset class is 7.25% and is based on a return attribution of 5.00% annual biological growth and a 2.25% increase in timber market prices. The timber market price component is consistent with our inflation forecast an d reflects the ability of ti mberland products to capitalize expected and unexpected inflation over 1 ong tim e periods. The holding period return to land is assumed to be negligible, and th us estim ated to have no addition to return unles s successful management is em ployed. Active timber ma nagement is thus viewed as a source of excess return, which is assum ed to contribute 0% net-of-fees across the universe of timber managers. Wilshire forecasts the risk for the timberland asset class to be 15.00%. For a m ore detailed discussion on our forecast methodology, please refer to Wilshire's 2007 research paper "Timberland Investments - Does the Return Fall Far From the Tree?"

[^6]
Commodities

Investor appetite for commodities exposure continues to grow after a year of outs tanding index perform ance and increasing signals of inflationary pressure on the horizon as investors continue to search for enhanced returns and por tfolio diversification. Institutional investo rs can gain exposure to commodities through either the futures market or via a swap contract.

The returns for comm odities differ from other asset classes because commodities do not represent compensation for the risk associated with future cash flow uncertainty. Instead, investors in com modity f utures are com pensated for bearing the risk of short-ter m commodity price fluctuations. In other wo rds, a m ajority of a co mmodity f uture investor's exposure is to short-term ec onomic conditions. W ilshire's 2005 paper "Commodity Futures I nvesting: Is All That Glitters Gold?" provides a m ore in depth examination of the history of com modities an d their use in an institu tional portf olio. Exhibit 19 lays out a return history for the Dow Jones-AIG Co mmodity Index ${ }^{\text {SM }}$, an equal weight index, CPI-U, and CPI-U $+2 \%$ premium over tim e. Fro m this histo rical record, we estimate that the future expected re turn for commodities will be inflation plus a two percent risk premium, or 4.25%.

Exhibit 19
Historical Commodity Returns

Source: Gary Gorton and K. Geert Rouwenhorst "Facts and Fantasies about Commodity Futures," Wilshire Compass
Wilshire's forecasted risk for commodity futures is 13% based on the historical record of the Dow Jones-AIG Commodity Index. It is important to note that other indexes differ in composition from the Dow Jones-AIG index and therefore may be substantially more or less risky.

The low measured correlation of commodity returns with more traditional assets, such as stocks and bonds, stems from their price se nsitivity to current econom ic supply and demand for ces. In contrast, stock and bond valuations are m ore he avily driven by forward-looking expectations. His torically, the se factors have cau sed trad itional assets and commodities to have lower correlations . A com plete list of correlations for commodities versus other asset classes can be found in Appendix A.

Wilshire's Historical Forecasts

Exhibit 20 shows how W ilshire's return forecasts have changed during the past 26 years. Notice the relative re lationship between asset classes an d how, when the assum ptions change, they generally move together. This co-movement in assumptions is the result of common econom ic drivers, such as the level of inf lation and inter est rates, which contribute to all asset class valuatio ns, thereby linking various investments to each other in, at m inimum, an indirect way. Such an atural linkage accommodates W ilshire's practice of generating asset class assum ptions on an annual basis and protects the usefulness of forecasts based on somewhat lagged valuations and market conditions.

Exhibit 20
Wilshire's Past Forecasts for Asset Class Returns

Risk and Correlation

Wilshire's approach to forecasting long-term risk and correlation is largely based on observed historical asset class behavior. Generally, past relationships serve as very good predictors of future risk a nd correlation. In practice, Wilshire applies sound financial theory and judgm ent to the in terpretation and analysis of historical resu lts. The role of
judgment ('art') versus measured statistics ('science') is more pronounced for investment categories with less historical data or that have experienced material structural changes.

In practice, W ilshire places much more confidence in th e predictive accuracy of past relationships for asset classes with longer and more robust historical data. In this report we rely upon historical m easurements of ri sk and correlation through 2007 to estim ate future risk and correlation. To m aximize the quality of our estim ates, we observe this historical behavior over various time horizons (i.e. five years, ten years, full history, etc.). Wilshire does not use a preset or s tatic rolling time period to derive these forecasts ; as such an approach could result in forward numbers reacting too quickly to what may prove to be short-term relationships or event driven anomalies between markets.

A full listing of Wilshire's risk an dive rsification assum ptions for all asse c c lasses is found in Appendix A.

Appendix A: Wilshire 2008 Correlation Matrix

	Equity					Fixed Income								Alternative						$\begin{gathered} \text { US } \\ \text { CPI } \\ \hline \end{gathered}$
	$\begin{gathered} \text { US } \\ \text { Stock } \end{gathered}$	$\begin{gathered} \hline \text { Dev ex-US } \\ \text { Stock } \\ \hline \end{gathered}$		Glbl Emg ex-US Stock Stock		Cash	Core Bond	$\begin{gathered} \hline \text { LT } \\ \text { Bond } \\ \text { (LPF) } \\ \hline \end{gathered}$	$\begin{gathered} \text { LT } \\ \text { Treas } \end{gathered}$	TIPS	High Yield	Non-US Bond		Real Estate			Pryt Mkts	Cmdty	Timbr	
				$\begin{gathered} \text { US } \\ \text { RES } \end{gathered}$	$\begin{gathered} \text { Prvt } \\ \text { RE } \end{gathered}$									$\begin{aligned} & \text { xUS } \\ & \text { RES } \end{aligned}$						
		(USD)	(Hdg)									(USD)	(Hdg)							
Expected Return (\%)	8.25	8.25	8.15	8.25	8.50	3.00	5.00	5.25	4.50	4.00	7.00	4.75	4.65	5.75	6.50	5.75	11.25	4.25	7.25	2.25
Expected Risk (\%)	16.00	17.00	16.00	24.00	17.25	1.00	5.00	7.00	11.00	6.00	10.00	10.00	4.00	15.00	12.25	13.00	26.00	13.00	15.00	1.00
Cash Yield (\%)	2.00	2.75	2.75	2.00	2.60	3.00	5.00	5.25	4.50	4.00	7.00	4.75	4.65	4.00	4.00	4.00	0.00	3.00	0.00	
Correlations:																				
US Stock	1.00																			
Dev ex-US Stock (USD)	0.80	1.00																		
Dev ex-US Stock (Hdg)	0.85	0.85	1.00																	
Emerging Mkt Stock	0.70	0.68	0.63	1.00																
Global ex-US Stock	0.83	0.98	0.85	0.81	1.00															
Cash Equivalents	0.00	-0.09	-0.01	-0.05	-0.09	1.00														
Core Bond	0.29	0.05	0.04	0.00	0.04	0.20	1.00													
LT Bond (LPF)	0.34	0.09	0.05	0.01	0.07	0.10	0.95	1.00												
LT Treasury	0.19	0.10	0.03	-0.05	0.07	0.10	0.85	0.87	1.00											
TIPS	-0.05	0.05	-0.05	0.00	0.04	0.15	0.20	0.15	0.20	1.00										
High Yield Bond	0.48	0.35	0.40	0.35	0.37	0.00	0.28	0.30	0.21	0.01	1.00									
Non-US Bond (USD)	-0.01	0.32	-0.07	-0.04	0.25	-0.10	0.40	0.39	0.44	0.05	0.01	1.00								
Non-US Bond (Hdg)	0.16	0.26	0.25	-0.01	0.21	0.10	0.63	0.60	0.62	0.25	0.27	0.45	1.00							
US RE Securities	0.35	0.25	0.25	0.30	0.28	0.00	0.15	0.15	0.10	0.15	0.30	0.05	0.00	1.00						
Private Real Estate	0.34	0.24	0.24	0.29	0.27	0.02	0.24	0.24	0.19	0.16	0.37	0.14	0.08	0.82	1.00					
Non-US RE Securities	0.50	0.65	0.50	0.60	0.68	0.00	0.10	0.10	0.05	0.15	0.40	0.30	0.10	0.50	0.44	1.00				
Private Markets	0.75	0.65	0.68	0.63	0.69	0.00	0.32	0.32	0.24	0.01	0.34	0.07	0.27	0.35	0.33	0.58	1.00			
Commodities	0.00	0.20	0.15	0.24	0.22	-0.05	0.00	0.00	0.00	0.20	0.08	0.15	0.00	0.20	0.21	0.25	0.05	1.00		
Timberland	0.00	0.10	0.05	0.15	0.12	-0.05	0.00	0.00	0.00	0.15	0.05	0.1	0.00	0.15	0.16	0.20	0.02	0.30	1.00	
Inflation (CPI) *	-0.10	-0.15	-0.05	-0.13	-0.15	0.10	-0.12	-0.12	-0.12	0.10	-0.08	-0.05	-0.08	-0.10	-0.07	0.00	-0.10	0.20	0.15	1.00

* Inflation correlations are provided for informational purposes and do not represent forward-looking assumptions

Appendix B: Wilshire 2008 Private Markets Correlation Matrix

	Buyouts	Venture Capital	Distressed Debt	Mezz Debt	Non-US Buyouts	Pvt Mkts Portfolio	$\begin{gathered} \text { US } \\ \text { Stocks } \end{gathered}$	$\begin{gathered} \hline \text { Dev } \\ \text { ex-US } \\ \text { Stock } \end{gathered}$	Emg Stock	Global ex-US Stock	Cash	Core Bond	High Yield Bond	$\begin{gathered} \text { US } \\ \text { RES } \end{gathered}$
Expected Return (\%)	10.00	12.00	8.75	8.75	10.00	11.25	8.25	8.25	8.25	8.50	3.00	5.00	7.00	5.75
Expected Risk (\%)	28.00	42.00	19.00	19.00	30.00	26.00	16.00	17.00	24.00	17.25	1.00	5.00	10.00	15.00
Correlations:														
Buyouts	1.00						0.70	0.55	0.55	0.59	0.00	0.40	0.30	0.35
Venture Capital	0.65	1.00					0.60	0.50	0.50	0.53	0.00	0.10	0.25	0.30
Distressed Debt	0.15	0.10	1.00				0.30	0.25	0.25	0.27	0.00	0.05	0.55	0.10
Mezzanine Debt	0.65	0.35	0.65	1.00			0.70	0.55	0.58	0.59	0.05	0.35	0.65	0.40
Non-US Buyouts	0.78	0.50	0.15	0.40	1.00		0.60	0.70	0.60	0.72	0.00	0.25	0.25	0.20
Pvt Mkts Portfolio	0.96	0.81	0.21	0.62	0.83	1.00	0.75	0.65	0.63	0.69	0.00	0.32	0.34	0.35

Appendix C: Wilshire 2008 Private Real Estate Correlation Matrix

	----------- Private RE -----------						Dev			Global		High	
	$\begin{gathered} \text { US } \\ \text { RES } \end{gathered}$	Non-US RES	Core	Value Added	Opport	Prvt RE Basket	US Stocks	ex-US Stock	Emg Stock	ex-US Stock	Cash	Core Bond	Yield Bond
Expected Return (\%)	5.75	5.75	5.50	7.75	9.25	6.50	8.25	8.25	8.25	8.50	3.00	5.00	7.00
Expected Risk (\%)	15.00	13.00	10.50	15.50	23.00	12.25	16.00	17.00	24.00	17.25	1.00	5.00	10.00
Correlations:													
US RE Securities	1.00						0.35	0.25	0.30	0.28	0.00	0.15	0.30
Non-US RES	0.50	1.00					0.50	0.65	0.60	0.68	0.00	0.10	0.40
Core RE	0.90	0.45	1.00				0.30	0.20	0.25	0.23	0.00	0.15	0.30
Value-Added RE	0.70	0.40	0.85	1.00			0.35	0.25	0.30	0.28	0.05	0.30	0.40
Opportunistic RE	0.55	0.35	0.70	0.95	1.00		0.35	0.25	0.30	0.28	0.05	0.35	0.40
Private RE Basket	0.82	0.44	0.96	0.96	0.88	1.00	0.34	0.24	0.29	0.27	0.02	0.24	0.37

Appendix D: Historical 1, 5\& 10-Year Rolling Returns: 1926 to 2007

Appendix D: 1-Year Returns

	$\begin{array}{r} \text { S\&P } 500 \\ \text { Index } \end{array}$	Bond Index	T-bills	CPI	Year	$\begin{array}{r} \hline \text { S\&P } 500 \\ \text { Index } \end{array}$	Bond Index	T-bills	CPI
Year									
1926	11.6	7.4	3.3	-1.5	1967	24.0	-5.0	4.2	3.0
1927	37.5	7.4	3.1	-2.1	1968	11.1	2.6	5.2	4.7
1928	43.6	2.8	3.5	-1.0	1969	-8.5	-8.1	6.6	6.1
1929	-8.4	3.3	4.7	0.2	1970	4.0	18.4	6.5	5.5
1930	-24.9	8.0	2.4	-6.0	1971	14.3	11.0	4.4	3.4
1931	-43.4	-1.9	1.1	-9.5	1972	19.0	7.3	3.8	3.5
1932	-8.2	10.8	1.0	-10.3	1973	-14.8	2.3	6.9	8.7
1933	54.0	10.4	0.3	0.5	1974	-26.4	0.2	8.2	12.4
1934	-1.4	13.8	0.2	2.0	1975	37.2	12.3	5.8	7.0
1935	47.7	9.6	0.1	3.0	1976	24.1	15.6	5.0	4.9
1936	33.9	6.7	0.2	1.2	1977	-7.3	3.0	5.4	6.7
1937	-35.0	2.8	0.3	3.1	1978	6.4	1.4	7.5	9.0
1938	31.1	6.1	0.0	-2.8	1979	18.5	1.9	10.3	13.3
1939	-0.4	4.0	0.0	-0.5	1980	32.2	2.7	11.8	12.5
1940	-9.8	3.4	0.0	1.0	1981	-4.9	6.3	14.5	8.9
1941	-11.6	2.7	0.0	9.7	1982	21.1	32.6	11.1	3.8
1942	20.4	2.6	0.3	9.3	1983	22.4	8.4	8.8	3.8
1943	25.9	2.8	0.4	3.2	1984	6.1	15.2	9.9	4.0
1944	19.7	4.7	0.3	2.1	1985	32.1	22.1	7.7	3.8
1945	36.4	4.1	0.3	2.3	1986	18.6	15.3	6.1	1.1
1946	-8.1	1.7	0.4	18.2	1987	5.2	2.8	5.4	4.4
1947	5.7	-2.3	0.5	9.0	1988	16.8	7.9	6.7	4.4
1948	5.5	4.1	0.8	2.7	1989	31.5	14.5	9.0	4.6
1949	18.8	3.3	1.1	-1.8	1990	-3.2	9.0	8.3	6.1
1950	31.7	2.1	1.2	5.8	1991	30.6	16.0	6.4	3.1
1951	24.0	-2.7	1.5	5.9	1992	7.7	7.4	3.9	2.9
1952	18.4	3.5	1.7	0.9	1993	10.0	9.8	3.2	2.8
1953	-1.0	3.4	1.8	0.6	1994	1.3	-2.9	4.2	2.7
1954	52.6	5.4	0.9	-0.5	1995	37.5	18.5	6.1	2.5
1955	31.6	0.5	1.6	0.4	1996	23.1	3.6	5.4	3.3
1956	6.6	-6.8	2.5	2.9	1997	33.3	9.7	5.5	1.7
1957	-10.8	8.7	3.2	3.0	1998	28.8	8.7	5.4	1.6
1958	43.4	-2.2	1.5	1.8	1999	21.0	-0.8	4.6	2.7
1959	12.0	-1.0	3.0	1.5	2000	-9.1	11.6	6.2	3.4
1960	0.5	9.1	2.7	1.5	2001	-11.9	8.4	4.4	1.6
1961	26.9	4.8	2.1	0.7	2002	-22.1	10.3	1.8	2.4
1962	-8.7	8.0	2.7	1.2	2003	28.7	4.1	1.2	1.9
1963	22.8	2.2	3.1	1.7	2004	10.9	4.3	1.3	3.3
1964	16.5	4.8	3.5	1.2	2005	4.9	2.4	3.1	3.4
1965	12.5	-0.5	3.9	1.9	2006	15.8	4.3	4.8	2.6
1966	-10.1	0.2	4.8	3.4	2007	5.5	7.0	5.0	4.1
Winning Percentage						62\%	24\%	13\%	

Appendix D: 5-Year Returns

	$\begin{array}{r} \hline \text { S\&P } 500 \\ \text { Index } \end{array}$	$\begin{aligned} & \hline \text { Bond } \\ & \text { Index } \end{aligned}$	T-bills	CPI		$\begin{array}{r} \hline \text { S\&P } 500 \\ \text { Index } \end{array}$	Bond Index	T-bills	CPI
Year					Year				
1926-30	8.7	5.8	3.4	-2.1	1965-69	5.0	-2.2	4.9	3.8
1927-31	-5.1	3.9	3.0	-3.7	1966-70	3.4	1.2	5.4	4.5
1928-32	-12.5	4.5	2.5	-5.4	1967-71	8.4	3.3	5.4	4.5
1929-33	-11.2	6.0	1.9	-5.1	1968-72	7.5	5.8	5.3	4.6
1930-34	-9.9	8.1	1.0	-4.8	1969-73	2.0	5.8	5.6	5.4
1931-35	3.1	8.4	0.5	-3.0	1970-74	-2.4	7.6	6.0	6.6
1932-36	22.5	10.3	0.3	-0.8	1971-75	3.2	6.5	5.8	6.9
1933-37	14.3	8.6	0.2	2.0	1972-76	4.9	7.4	5.9	7.2
1934-38	10.7	7.8	0.1	1.3	1973-77	-0.2	6.5	6.3	7.9
1935-39	10.9	5.8	0.1	0.8	1974-78	4.3	6.3	6.4	8.0
1936-40	0.5	4.6	0.1	0.4	1975-79	14.8	6.7	6.8	8.1
1937-41	-7.5	3.8	0.1	2.0	1976-80	13.9	4.8	8.0	9.2
1938-42	4.6	3.8	0.1	3.2	1977-81	8.0	3.1	9.9	10.1
1939-43	3.8	3.1	0.1	4.5	1978-82	13.9	8.4	11.0	9.5
1940-44	7.7	3.3	0.2	5.0	1979-83	17.2	9.8	11.3	8.4
1941-45	17.0	3.4	0.3	5.3	1980-84	14.6	12.6	11.2	6.5
1942-46	17.9	3.2	0.3	6.8	1981-85	14.6	16.5	10.4	4.8
1943-47	14.8	2.2	0.4	6.8	1982-86	19.7	18.4	8.7	3.3
1944-48	10.9	2.4	0.5	6.7	1983-87	16.4	12.5	7.6	3.4
1945-49	10.7	2.2	0.6	5.8	1984-88	15.4	12.4	7.1	3.5
1946-50	9.9	1.8	0.8	6.6	1985-89	20.4	12.3	7.0	3.7
1947-51	16.7	0.9	1.0	4.3	1986-90	13.2	9.8	7.1	4.1
1948-52	19.4	2.0	1.3	2.7	1987-91	15.4	9.9	7.1	4.5
1949-53	17.9	1.9	1.5	2.2	1988-92	15.9	10.9	6.8	4.2
1950-54	23.9	2.3	1.4	2.5	1989-93	14.5	11.3	6.1	3.9
1951-55	23.9	2.0	1.5	1.4	1990-94	8.7	7.7	5.2	3.5
1952-56	20.2	1.1	1.7	0.8	1991-95	16.6	9.5	4.8	2.8
1953-57	13.6	2.1	2.0	1.3	1992-96	15.2	7.0	4.6	2.8
1954-58	22.3	1.0	1.9	1.5	1993-97	20.2	7.5	4.9	2.6
1955-59	15.0	-0.3	2.3	1.9	1994-98	24.1	7.3	5.3	2.4
1956-60	8.9	1.4	2.6	2.1	1995-99	28.6	7.7	5.4	2.4
1957-61	12.8	3.8	2.5	1.7	1996-00	18.3	6.5	5.4	2.5
1958-62	13.3	3.6	2.4	1.3	1997-01	10.7	7.4	5.2	2.2
1959-63	9.8	4.5	2.7	1.3	1998-02	-0.6	7.5	4.5	2.3
1960-64	10.7	5.7	2.8	1.2	1999-03	-0.6	6.6	3.6	2.4
1961-65	13.2	3.8	3.1	1.3	2000-04	-2.3	7.7	3.0	2.5
1962-66	5.7	2.9	3.6	1.9	2001-05	0.5	5.9	2.4	2.5
1963-67	12.4	0.3	3.9	2.2	2002-06	6.2	5.1	2.4	2.7
1964-68	10.2	0.4	4.3	2.8	2003-07	12.8	4.4	3.1	3.0
				Winning Percentage:		74\%	22\%	4\%	

Appendix D: 10-Year Returns

	$\begin{array}{r} \hline \text { S\&P } 500 \\ \text { Index } \end{array}$	Bond Index	T-bills	CPI	Year	$\begin{array}{r} \hline \text { S\&P } 500 \\ \text { Index } \end{array}$	Bond Index	T-bills	CPI
Year									
1926-35	5.9	7.1	2.0	-2.6	1963-72	9.9	3.0	4.6	3.4
1927-36	7.8	7.0	1.7	-2.3	1964-73	6.0	3.0	5.0	4.1
1928-37	0.0	6.5	1.4	-1.8	1965-74	1.2	2.6	5.4	5.2
1929-38	-0.9	6.9	1.0	-2.0	1966-75	3.3	3.8	5.6	5.7
1930-39	-0.1	6.9	0.6	-2.0	1967-76	6.7	5.3	5.7	5.9
1931-40	1.8	6.5	0.3	-1.3	1968-77	3.6	6.2	5.8	6.2
1932-41	6.4	7.0	0.2	0.6	1969-78	3.2	6.1	6.0	6.7
1933-42	9.4	6.2	0.1	2.6	1970-79	5.9	7.2	6.4	7.4
1934-43	7.2	5.4	0.1	2.9	1971-80	8.4	5.6	6.9	8.1
1935-44	9.3	4.5	0.2	2.9	1972-81	6.4	5.2	7.9	8.6
1936-45	8.4	4.0	0.2	2.8	1973-82	6.6	7.4	8.6	8.7
1937-46	4.4	3.5	0.2	4.4	1974-83	10.6	8.1	8.8	8.2
1938-47	9.6	3.0	0.2	5.0	1975-84	14.7	9.6	9.0	7.3
1939-48	7.3	2.8	0.3	5.6	1976-85	14.2	10.5	9.2	7.0
1940-49	9.2	2.7	0.4	5.4	1977-86	13.7	10.5	9.3	6.6
1941-50	13.4	2.6	0.5	5.9	1978-87	15.2	10.4	9.3	6.4
1942-51	17.3	2.0	0.7	5.5	1979-88	16.3	11.1	9.2	5.9
1943-52	17.1	2.1	0.8	4.7	1980-89	17.5	12.4	9.1	5.1
1944-53	14.3	2.2	1.0	4.4	1981-90	13.9	13.1	8.7	4.5
1945-54	17.1	2.2	1.0	4.2	1982-91	17.5	14.1	7.9	3.9
1946-55	16.7	1.9	1.1	4.0	1983-92	16.2	11.7	7.2	3.8
1947-56	18.4	1.0	1.3	2.5	1984-93	14.9	11.9	6.6	3.7
1948-57	16.4	2.1	1.6	2.0	1985-94	14.4	10.0	6.1	3.6
1949-58	20.1	1.4	1.7	1.9	1986-95	14.9	9.6	5.9	3.5
1950-59	19.4	1.0	1.9	2.2	1987-96	15.3	8.5	5.8	3.7
1951-60	16.2	1.7	2.0	1.8	1988-97	18.0	9.2	5.9	3.4
1952-61	16.4	2.4	2.1	1.3	1989-98	19.2	9.3	5.7	3.1
1953-62	13.4	2.9	2.2	1.3	1990-99	18.2	7.7	5.3	2.9
1954-63	15.9	2.7	2.3	1.4	1991-00	17.5	8.0	5.1	2.7
1955-64	12.8	2.7	2.6	1.6	1992-01	12.9	7.2	4.9	2.5
1956-65	11.1	2.6	2.8	1.7	1993-02	9.3	7.5	4.7	2.5
1957-66	9.2	3.3	3.0	1.8	1994-03	11.1	6.9	4.5	2.4
1958-67	12.9	1.9	3.1	1.8	1995-04	12.1	7.7	4.2	2.4
1959-68	10.0	2.4	3.5	2.1	1996-05	9.1	6.2	3.9	2.5
1960-69	7.8	1.7	3.9	2.5	1997-06	8.4	6.2	3.8	2.4
1961-70	8.2	2.5	4.3	2.9	1998-07	5.9	6.0	3.8	2.7
1962-71	7.1	3.1	4.5	3.2					
Winning Percentage:						81\%	14\%	5\%	

Wilshire Consulting
2008 Asset Allocation Return and Risk Assumptions

Appendix E: Histogram of 1,5 \& 10-Year S\&P 500 Index Returns

Important Information

This material contains confidential and prop rietary information of W ilshire Consulting, and is intended for the exclus ive use of the person to whom it is pr ovided. It may not be modified, sold or otherwise pr ovided, in whole or in part, to any other person or entity without prior written permission from Wilshire Consulting.

The information contained herein has been obtained from sources believed to be reliable. Wilshire Consulting gives no repr esentations or warran ties as to the ac curacy of such information, and accepts no responsibil ity or liability (inc luding for indirect, consequential or incidental d amages) for any erro r, om ission or in accuracy in such information and for results obtained from its use. Information and opinions are as of t he date indicated and are subject to change without notice.

This material is intended for infor mational purposes only and should not be construed as legal, accounting, tax, investm ent, or othe r professional advice. Past perform ance does not guarantee future returns.

[^0]: ${ }^{1}$ Source of historical returns throughout report is Wilshire Compass unless otherwise noted.

[^1]: ${ }^{2}$ Wilshire uses the Lehman Aggregate U.S. Bond Index as the principal benchmark for U.S. Core Bonds.

[^2]: ${ }^{3}$ Wilshire Associates, Inc. (2005). High Yield Market Update.: Yang.
 ${ }^{4}$ Altassets.com

[^3]: ${ }^{5}$ Wilshire Associates, Inc. (2002). Private Equity Investing Part 2 - Generating Asset Class Assumptions.: Foresti and Toth.

[^4]: ${ }^{6}$ MoneyTree Survey, Q3 2007 Results, U.S. Report. Price Waterhouse Coopers, National Venture Capital Association, Data provided by Thomson Financial. Located on the Web at www.pwemoneytree.com.
 ${ }^{7}$ www.bloomberg.com

[^5]: ${ }^{8}$ Wilshire Associates, Inc. (2007). Real Asset Investments. Browning. 08/06/2007.

[^6]: ${ }^{9}$ Wilshire Associates, Inc. (2007). Infrastructure Investing.: Dudkowski and Toth.

